eprintid: 8103 rev_number: 8 eprint_status: archive userid: 46 dir: disk0/00/00/81/03 datestamp: 2024-08-29 07:40:34 lastmod: 2024-08-29 07:40:34 status_changed: 2024-08-29 07:40:34 type: thesis metadata_visibility: show creators_name: Yudiansyah, Yudiansyah creators_name: Anggraeni, Irma creators_name: Denih, Asep creators_NPM: 065117089 contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_type: http://www.loc.gov/loc.terms/relators/TRC contributors_name: Yudiansyah, Yudiansyah contributors_name: Anggraeni, Irma contributors_name: Denih, Asep contributors_NIDN: 0418018902 contributors_NIDN: 0406097101 corp_creators: Universitas Pakuan corp_creators: Fakultas Matematika dan Ilmu Pengetahuan Alam corp_creators: Program Studi Ilmu Komputer title: Sistem Rekomendasi Menu Makanan dan Minuman dengan Metode K- MEANS dan FP-GROWTH ispublished: pub subjects: QK divisions: sch_ecs full_text_status: public abstract: Sistem Rekomendasi Menu Makanan dan Minuman dengan Metode K- MEANS dan FP-GROWTH pada Cafe Milarian Asep Denih1) , Irma Anggraeni 2) , Yudiansyah3) 1,2,3 Program Studi Ilmu Komputer, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Pakuan 1,2,3 Jl. Pakuan No.1, Ciheuleut, Bogor, 16143 Email: 1asep.denih@unpak.ac.id, 2 irma.anggraeni@unpak.ac.id, 3 yudiansyah04@gmail.com Research aims to enhance operational efficiency and customer experience in a cafe through the implementation of data mining-based technology. The two main methods used in this study are K-Means Clustering and the FP-Growth Algorithm. K-Means is employed to group customers based on their menu preferences and purchasing behavior, while FP-Growth is used to analyze frequently occurring purchase patterns. The implementation of K-Means enables the cafe to devise more targeted marketing strategies, adjusting menus and promotions to meet customer needs. Additionally, FP�Growth aids in identifying relationships between frequently co-purchased menu items, allowing the cafe to create more enticing bundled offers and boost cross-menu sales. The implementation of this technology is expected to have a positive impact on customer satisfaction, increase sales, and optimize inventory management in the cafe. By combining these two methods, cafes can improve operational efficiency, provide a better customer experience, and compete effectively in the increasingly competitive cafe industry. Keyword : Caffe Technology Efficiency, K-Means, FP-Growth, Product Recommendation date: 2024-01-28 date_type: published pages: 35 institution: Universitas Pakuan department: Fakultas Matematika dan Ilmu Pengetahuan Alam thesis_type: Skripsi thesis_name: Sarjana citation: Yudiansyah, Yudiansyah and Anggraeni, Irma and Denih, Asep (2024) Sistem Rekomendasi Menu Makanan dan Minuman dengan Metode K- MEANS dan FP-GROWTH. Skripsi thesis, Universitas Pakuan. document_url: http://eprints.unpak.ac.id/8103/1/LAPORAN%20SIDANG%20SKRIPSI%20-%20065117089%20-%20Yudiansyah.pdf document_url: http://eprints.unpak.ac.id/8103/2/HALAMAN%20PENGESAHAN%20%281%29.pdf