eprintid: 8423 rev_number: 7 eprint_status: archive userid: 46 dir: disk0/00/00/84/23 datestamp: 2024-10-14 03:10:32 lastmod: 2024-10-14 03:10:32 status_changed: 2024-10-14 03:10:32 type: thesis metadata_visibility: show creators_name: Amanda, Salma creators_name: Tita Tosida, Eneng creators_name: Erniyati, Erniyati creators_NPM: 065119196 contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_name: Amanda, Salma contributors_name: Tita Tosida, Eneng contributors_name: Erniyati, Erniyati contributors_NIDN: 0425087601 contributors_NIDN: 0428116301 corp_creators: Universitas Pakuan corp_creators: Fakultas Matematika dan Ilmu Pengetahuan Alam corp_creators: Program Studi Ilmu Komputer title: PREDIKSI POTENSI DESA CERDAS MENGGUNAKAN ALGORITMA KLASIFIKASI RANDOM FOREST DAN LOGISTIC REGRESSION Eneng Tita Tosida Computer Science Dept. Pakuan Univeristy Bogor, Indonesia enengtitatosida@unpak.ac.id Erniyati Computer Science Dept. Pakuan University Bogor, Indonesia neni_erniyati@unpak.ac.id Salma Amanda Computer Science Dept. Pakuan University Bogor, Indonesia salma.065119196@unpak.ac.id Indra Permana Solihin Informatic Dept. UPN Veteran Jakarta, Indonesia indrapermana@upnvj@ac.id Abstrak— Pertumbuhan penduduk yang semakin lama meningkat menimbulkan terjadinya migrasi dari desa ke kota, karena selama ini pembangunan cenderung berorientasi dan bias sehingga menyebabkan pembangunan di desa menjadi terhambat. Hal tersebut lah yang menciptakan ketimpangan antara desa dengan kota. Salah satu cara untuk mengurangi ketimpangan antara desa dan kota yaitu dengan adanya pembangunan desa cerdas atau smart village. Oleh karena itu, dilakukan prediksi potensi desa cerdas dengan membandingkan dua algoritma klasifikasi, yaitu Random Forest dan Logistic Regression untuk mencari tahu mana algoritma yang kinerjanya lebih baik. Data penelitian ini bersumber dari Badan Pusat Statistik tahun 2021 dengan jumlah variasi data yaitu 1500, 1550, 1600, dan 1650 yang diambil secara acak dan proposional. Evaluasi pada penelitian ini menggunakan confusion matrix dengan mengambil nilai precision yang paling tinggi sebagai pengambilan kesimpulan kinerja algoritma. Pembagian dataset dari penelitian ini terdiri 90:10, 85:15, 80:20, dan 70:30. Hasil terbaik dari percobaan adalah dataset 85:15 dengan jumlah data 1500. Nilai precision yang paling tinggi dari algoritma Random Forest sebesar 92.37% dan Logistic Regression sebesar 92.30%. Karena algoritma Random Forest lebih unggul daripada algoritma Logistic Regression, maka hasil prediksi yang digunakan adalah prediksi Random Forest. Kata Kunci— Desa Cerdas, Potensi Desa, Random Forest, Logistic Regression ispublished: unpub subjects: QK divisions: sch_ecs full_text_status: public abstract: PREDIKSI POTENSI DESA CERDAS MENGGUNAKAN ALGORITMA KLASIFIKASI RANDOM FOREST DAN LOGISTIC REGRESSION Eneng Tita Tosida Computer Science Dept. Pakuan Univeristy Bogor, Indonesia enengtitatosida@unpak.ac.id Erniyati Computer Science Dept. Pakuan University Bogor, Indonesia neni_erniyati@unpak.ac.id Salma Amanda Computer Science Dept. Pakuan University Bogor, Indonesia salma.065119196@unpak.ac.id Indra Permana Solihin Informatic Dept. UPN Veteran Jakarta, Indonesia indrapermana@upnvj@ac.id Abstrak— Pertumbuhan penduduk yang semakin lama meningkat menimbulkan terjadinya migrasi dari desa ke kota, karena selama ini pembangunan cenderung berorientasi dan bias sehingga menyebabkan pembangunan di desa menjadi terhambat. Hal tersebut lah yang menciptakan ketimpangan antara desa dengan kota. Salah satu cara untuk mengurangi ketimpangan antara desa dan kota yaitu dengan adanya pembangunan desa cerdas atau smart village. Oleh karena itu, dilakukan prediksi potensi desa cerdas dengan membandingkan dua algoritma klasifikasi, yaitu Random Forest dan Logistic Regression untuk mencari tahu mana algoritma yang kinerjanya lebih baik. Data penelitian ini bersumber dari Badan Pusat Statistik tahun 2021 dengan jumlah variasi data yaitu 1500, 1550, 1600, dan 1650 yang diambil secara acak dan proposional. Evaluasi pada penelitian ini menggunakan confusion matrix dengan mengambil nilai precision yang paling tinggi sebagai pengambilan kesimpulan kinerja algoritma. Pembagian dataset dari penelitian ini terdiri 90:10, 85:15, 80:20, dan 70:30. Hasil terbaik dari percobaan adalah dataset 85:15 dengan jumlah data 1500. Nilai precision yang paling tinggi dari algoritma Random Forest sebesar 92.37% dan Logistic Regression sebesar 92.30%. Karena algoritma Random Forest lebih unggul daripada algoritma Logistic Regression, maka hasil prediksi yang digunakan adalah prediksi Random Forest. Kata Kunci— Desa Cerdas, Potensi Desa, Random Forest, Logistic Regression Eneng Tita Tosida Computer Science Dept. Pakuan Univeristy Bogor, Indonesia enengtitatosida@unpak.ac.id Erniyati Computer Science Dept. Pakuan University Bogor, Indonesia neni_erniyati@unpak.ac.id Salma Amanda Computer Science Dept. Pakuan University Bogor, Indonesia salma.065119196@unpak.ac.id Indra Permana Solihin Informatic Dept. UPN Veteran Jakarta, Indonesia indrapermana@upnvj@ac.id Abstrak— Pertumbuhan penduduk yang semakin lama meningkat menimbulkan terjadinya migrasi dari desa ke kota, karena selama ini pembangunan cenderung berorientasi dan bias sehingga menyebabkan pembangunan di desa menjadi terhambat. Hal tersebut lah yang menciptakan ketimpangan antara desa dengan kota. Salah satu cara untuk mengurangi ketimpangan antara desa dan kota yaitu dengan adanya pembangunan desa cerdas atau smart village. Oleh karena itu, dilakukan prediksi potensi desa cerdas dengan membandingkan dua algoritma klasifikasi, yaitu Random Forest dan Logistic Regression untuk mencari tahu mana algoritma yang kinerjanya lebih baik. Data penelitian ini bersumber dari Badan Pusat Statistik tahun 2021 dengan jumlah variasi data yaitu 1500, 1550, 1600, dan 1650 yang diambil secara acak dan proposional. Evaluasi pada penelitian ini menggunakan confusion matrix dengan mengambil nilai precision yang paling tinggi sebagai pengambilan kesimpulan kinerja algoritma. Pembagian dataset dari penelitian ini terdiri 90:10, 85:15, 80:20, dan 70:30. Hasil terbaik dari percobaan adalah dataset 85:15 dengan jumlah data 1500. Nilai precision yang paling tinggi dari algoritma Random Forest sebesar 92.37% dan Logistic Regression sebesar 92.30%. Karena algoritma Random Forest lebih unggul daripada algoritma Logistic Regression, maka hasil prediksi yang digunakan adalah prediksi Random Forest. Kata Kunci— Desa Cerdas, Potensi Desa, Random Forest, Logistic Regression date: 2024-06-14 date_type: published pages: 14 institution: Universitas Pakuan department: Fakultas Matematika dan Ilmu Pengetahuan Alam thesis_type: Skripsi thesis_name: Sarjana citation: Amanda, Salma and Tita Tosida, Eneng and Erniyati, Erniyati (2024) PREDIKSI POTENSI DESA CERDAS MENGGUNAKAN ALGORITMA KLASIFIKASI RANDOM FOREST DAN LOGISTIC REGRESSION Eneng Tita Tosida Computer Science Dept. Pakuan Univeristy Bogor, Indonesia enengtitatosida@unpak.ac.id Erniyati Computer Science Dept. Pakuan University Bogor, Indonesia neni_erniyati@unpak.ac.id Salma Amanda Computer Science Dept. Pakuan University Bogor, Indonesia salma.065119196@unpak.ac.id Indra Permana Solihin Informatic Dept. UPN Veteran Jakarta, Indonesia indrapermana@upnvj@ac.id Abstrak— Pertumbuhan penduduk yang semakin lama meningkat menimbulkan terjadinya migrasi dari desa ke kota, karena selama ini pembangunan cenderung berorientasi dan bias sehingga menyebabkan pembangunan di desa menjadi terhambat. Hal tersebut lah yang menciptakan ketimpangan antara desa dengan kota. Salah satu cara untuk mengurangi ketimpangan antara desa dan kota yaitu dengan adanya pembangunan desa cerdas atau smart village. Oleh karena itu, dilakukan prediksi potensi desa cerdas dengan membandingkan dua algoritma klasifikasi, yaitu Random Forest dan Logistic Regression untuk mencari tahu mana algoritma yang kinerjanya lebih baik. Data penelitian ini bersumber dari Badan Pusat Statistik tahun 2021 dengan jumlah variasi data yaitu 1500, 1550, 1600, dan 1650 yang diambil secara acak dan proposional. Evaluasi pada penelitian ini menggunakan confusion matrix dengan mengambil nilai precision yang paling tinggi sebagai pengambilan kesimpulan kinerja algoritma. Pembagian dataset dari penelitian ini terdiri 90:10, 85:15, 80:20, dan 70:30. Hasil terbaik dari percobaan adalah dataset 85:15 dengan jumlah data 1500. Nilai precision yang paling tinggi dari algoritma Random Forest sebesar 92.37% dan Logistic Regression sebesar 92.30%. Karena algoritma Random Forest lebih unggul daripada algoritma Logistic Regression, maka hasil prediksi yang digunakan adalah prediksi Random Forest. Kata Kunci— Desa Cerdas, Potensi Desa, Random Forest, Logistic Regression. Skripsi thesis, Universitas Pakuan. document_url: http://eprints.unpak.ac.id/8423/1/laporan%20skripsi%20-%20TTD.pdf