eprintid: 8868 rev_number: 7 eprint_status: archive userid: 46 dir: disk0/00/00/88/68 datestamp: 2025-01-16 02:25:03 lastmod: 2025-01-16 02:25:03 status_changed: 2025-01-16 02:25:03 type: thesis metadata_visibility: show creators_name: Kumas, Nurmin creators_name: Chairunnas, Andi creators_name: Ardiansyah, Deden creators_NPM: 065118322 contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_name: Kumas, Nurmin contributors_name: Chairunnas, Andi contributors_name: Ardiansyah, Deden corp_creators: Universitas Pakuan corp_creators: Fakultas Matematika dan Ilmu Pnegetahuan Alam corp_creators: Program Studi Ilmu Komputer title: Model Sistem Pengenalan Rambu Lalu Lintas Menggunakan Raspberry PI Berbasis Internet Things ispublished: pub subjects: QK divisions: sch_ecs full_text_status: public abstract: Traffic Sign Recognition System Model Using Raspberry Pi Based on the Internet of Things Andi Chairunnas¹, Deden Ardiansyah², Nurmin Kuma³ ¹,²,³ Department of Computer Science, Faculty of Mathematics and Natural Sciences, Universitas Pakuan, Bogor, West Java, 16143, Indonesia Abstrak This research develops a traffic sign recognition system using Internet of Things (IoT) technology with Raspberry Pi as the main processing unit. The system aims to help drivers detect traffic signs and improve road safety by providing audio descriptions of the detected signs. Using OpenCV for image processing, the system achieves 85% accuracy for clear images and 77% accuracy for blurry images, demonstrating the potential of IoT-based systems in smart driving applications. Keywords : IoT; Traffic Sign Recognition; Raspberry Pi; Computer Vision; OpenCV date: 2024-10-08 date_type: published pages: 19 institution: Universitas Pakuan department: Fakultas Matematika dan Pengetahuan Alam thesis_type: Skripsi thesis_name: Sarjana citation: Kumas, Nurmin and Chairunnas, Andi and Ardiansyah, Deden (2024) Model Sistem Pengenalan Rambu Lalu Lintas Menggunakan Raspberry PI Berbasis Internet Things. Skripsi thesis, Universitas Pakuan. document_url: http://eprints.unpak.ac.id/8868/1/Laporan_Skripsi_Nurmin%20kuma.pdf