Number of items: 1.
Aripin, Moch. and Hardhienata, Soewarto and Puja Negara, Teguh
(2023)
J-INTECH (Journal of Information and Technology)
Terakreditasi Kemendikbud SK No. 204/E/KPT/2022
E-ISSN: 2580-720X || P-ISSN: 2303-1425
Deteksi Gangguan Tidur Menggunakan Metode Jaringan Saraf Tiruan
Berbasis Internet Of Things (IOT)
Moch Aripin1*
, Soewarto Hardhienata2, Teguh Puja Negara3
1,2,3Universitas Pakuan, Fakultas Matematika dan Ilmu Pengetahuan Alam, Program Studi Ilmu Komputer,
Bogor, Indonesia
Informasi Artikel Abstrak
Diterima: 26-05-2024
Direvisi: 27-05-2024
Diterbitkan: 28-06-2024
Gangguan tidur seperti Central Sleep Apnea (CSA) dan
Obstructive Sleep Apnea (OSA) dapat berdampak buruk bagi
kesehatan jika tidak ditangani dengan baik. Penelitian ini
bertujuan merancang alat pendeteksi gangguan tidur
menggunakan metode jaringan saraf tiruan berbasis Internet
of Things (IoT). Sistem ini menggunakan sensor AD8232 untuk
mengakuisisi sinyal elektrokardiogram (EKG) yang kemudian
diekstraksi fitur High Frequency dan Low Frequency. Ekstraksi
fitur dilakukan dengan metode Fast Fourier Transform.
Klasifikasi kondisi normal, CSA, atau OSA dilakukan dengan
metode jaringan saraf tiruan Multilayer Perceptron yang
ditraining menggunakan data dari Physionet. Mikrokontroler
ESP32 digunakan untuk memproses ekstraksi fitur dan
klasifikasi. Hasil klasifikasi kemudian dikirimkan ke database
melalui modul WiFi ESP32 dan ditampilkan pada antarmuka
website. Dari pengujian kinerja sensor AD8232 diperoleh
akurasi 96,85%, akurasi klasifikasi menggunakan Jaringan
Syaraf Tiruan sebesar 80%, dan waktu komputasi rata-rata 7,6
ms. Sistem ini berpotensi membantu deteksi dini gangguan
tidur sehingga dapat ditangani lebih awal oleh tenaga medis.
Kata Kunci
Gangguan tidur; Central Sleep Apnea;
obstructive Sleep Apnea; Jaringan Saraf
Tiruan; Internet of Things
*Email Korespondensi:
mocharipin214@gmail.com
Abstract
Sleep disorders such as Central Sleep Apnea (CSA) and
Obstructive Sleep Apnea (OSA) can have adverse health effects
if not treated properly. This research aims to design a sleep
disorder detection device using the Internet of Things (IoT)-
based artificial neural network method. This system uses
AD8232 sensor to acquire electrocardiogram (ECG) signal
which is then extracted High Frequency and Low Frequency
features. Feature extraction is performed using the Fast
Fourier Transform method. Classification of normal, CSA, or
OSA conditions is performed using the Multilayer Perceptron
artificial neural network method which is trained using data
from Physionet. The ESP32 microcontroller is used to process
the feature extraction and classification. The classification
results are then sent to the database via the ESP32 WiFi
module and displayed on the website interface. From testing
the performance of the AD8232 sensor, an accuracy of 96.85%
was obtained, the classification accuracy using the Artificial
Neural Network was 80%, and the average computation time
was 7.6 ms. This system has the potential to help early
detection of sleep disorders so that they can be treated early by
medical personnel.
Skripsi thesis, Universitas Pakuan.
This list was generated on Fri Dec 27 03:35:43 2024 WIB.